fuzzychinese #
形近词中文模糊匹配
A simple tool to fuzzy match chinese words, particular useful for proper name matching and address matching.
一个可以模糊匹配形近字词的小工具。对于专有名词,地址的匹配尤其有用。
安装说明 #
pip install fuzzychinese
使用说明 #
首先使用想要匹配的字典对模型进行训练。
然后用FuzzyChineseMatch.transform(raw_words, n) 来快速查找与raw_words的词最相近的前n个词。
训练模型时有三种分析方式可以选择,笔划分析(stroke),部首分析(radical),和单字分析(char)。也可以通过调整ngram_range的值来提高模型性能。
匹配完成后返回相似度分数,匹配的相近词语及其原有索引号。
    import pandas as pd
    from fuzzychinese import FuzzyChineseMatch
    test_dict =  pd.Series(['长白朝鲜族自治县','长阳土家族自治县','城步苗族自治县','达尔罕茂明安联合旗','汨罗市'])
    raw_word = pd.Series(['达茂联合旗','长阳县','汩罗市'])
    assert('汩罗市'!='汨罗市') # They are not the same!
    fcm = FuzzyChineseMatch(ngram_range=(3, 3), analyzer='stroke')
    fcm.fit(test_dict)
    top2_similar = fcm.transform(raw_word, n=2)
    res = pd.concat([
        raw_word,
        pd.DataFrame(top2_similar, columns=['top1', 'top2']),
        pd.DataFrame(
            fcm.get_similarity_score(),
            columns=['top1_score', 'top2_score']),
        pd.DataFrame(
            fcm.get_index(),
            columns=['top1_index', 'top2_index'])],
                    axis=1)
| top1 | top2 | top1_score | top2_score | top1_index | top2_index | |
|---|---|---|---|---|---|---|
| 达茂联合旗 | 达尔罕茂明安联合旗 | 长白朝鲜族自治县 | 0.824751 | 0.287237 | 3 | 0 | 
| 长阳县 | 长阳土家族自治县 | 长白朝鲜族自治县 | 0.610285 | 0.475000 | 1 | 0 | 
| 汩罗市 | 汨罗市 | 长白朝鲜族自治县 | 1.000000 | 0.152093 | 4 | 0 | 
其他功能 #
- 
直接使用
Stroke,Radical进行汉字分解。stroke = Stroke() radical = Radical() print("像", stroke.get_stroke("像")) print("像", radical.get_radical("像"))像 ㇒〡㇒㇇〡㇕一㇒㇁㇒㇒㇒㇏ 像 人象 - 
使用
FuzzyChineseMatch.compare_two_columns(X, Y)对每一行的两个词进行比较,获得相似度分数。 - 
详情请参见说明文档.
 
致谢 #
Installation #
pip install fuzzychinese
Quickstart #
First train a model with the target list of words you want to match to.
Then use FuzzyChineseMatch.transform(raw_words, n) to find top n most similar words in the target for your raw_words .
There are three analyzers to choose from when training a model: stroke, radical, and char. You can also change ngram_range to fine-tune the model.
After the matching, similarity score, matched words and its corresponding index are returned.
    from fuzzychinese import FuzzyChineseMatch
    test_dict =  pd.Series(['长白朝鲜族自治县','长阳土家族自治县','城步苗族自治县','达尔罕茂明安联合旗','汨罗市'])
    raw_word = pd.Series(['达茂联合旗','长阳县','汩罗市'])
    assert('汩罗市'!='汨罗市') # They are not the same!
    fcm = FuzzyChineseMatch(ngram_range=(3, 3), analyzer='stroke')
    fcm.fit(test_dict)
    top2_similar = fcm.transform(raw_word, n=2)
    res = pd.concat([
        raw_word,
        pd.DataFrame(top2_similar, columns=['top1', 'top2']),
        pd.DataFrame(
            fcm.get_similarity_score(),
            columns=['top1_score', 'top2_score']),
        pd.DataFrame(
            fcm.get_index(),
            columns=['top1_index', 'top2_index'])],
                    axis=1)
| top1 | top2 | top1_score | top2_score | top1_index | top2_index | |
|---|---|---|---|---|---|---|
| 达茂联合旗 | 达尔罕茂明安联合旗 | 长白朝鲜族自治县 | 0.824751 | 0.287237 | 3 | 0 | 
| 长阳县 | 长阳土家族自治县 | 长白朝鲜族自治县 | 0.610285 | 0.475000 | 1 | 0 | 
| 汩罗市 | 汨罗市 | 长白朝鲜族自治县 | 1.000000 | 0.152093 | 4 | 0 | 
Other use #
- 
Directly use
Stroke,Radicalto decompose Chinese character into strokes or radicals.stroke = Stroke() radical = Radical() print("像", stroke.get_stroke("像")) print("像", radical.get_radical("像"))像 ㇒〡㇒㇇〡㇕一㇒㇁㇒㇒㇒㇏ 像 人象 - 
Use
FuzzyChineseMatch.compare_two_columns(X, Y)to compare the pair of words in each row to get similarity score. - 
See documentation for details.